# Cold Ironing BP's Alaskan Class Tankers at BP's Berth 121 in the Port of Long Beach

November 9, 2004

Presenter - Craig Smith





#### Cold Ironing BP's Alaskan Class Tankers at Berth 121

#### Agenda -

- Summary
- Background
- Why cold ironing makes sense at B-121
- ❖ How it will work
- Emissions Reductions
- Schedule
- Summary





### Cold Ironing BP's Alaskan Class Tankers at Berth 121

#### Summary -

- Unique opportunities makes application of cold ironing at B-121 feasible
  - Berth infrastructure
  - Vessel design
  - Vessel visit frequency
  - POLB support
- Cold ironing is not a universal solution to reduce oil tanker emissions
- Regulations should not dictate which technology is used to achieve emission reductions
- Cold ironing is more expensive, making voluntary participation less likely without incentives such as emission reduction credits



# Why Cold Ironing Makes Sense at Berth 121







## Vessel Design

- Potential emission savings vary by tanker type
  - During discharge cargo operations:
    - ✓ <u>Steam ships</u> and <u>motor ships</u> derive nominally 5% of their energy from electricity
    - ✓ <u>Diesel electric</u> vessels derive nearly 100% of their energy from electricity
    - ✓ Since 1998, Berth 121 has had 1143 ship calls less than 10 of these have been from <u>diesel electric</u> vessels
      - 3 of these ship calls have been the Alaskan Frontier over the last 2 months

#### **Vessel Dimensions**

ΠActual B-121 vessel Length Over All (LOA) can vary from 700 to 1100 feet

ΠAlaskan Class LOA is 950 feet

ΠSimple issue – our design is focused around meeting a +/- 11 feet location of the ship's electrical connections





## Voltage Level on Tankers

- ✓ Our design is set to deliver 6.6 kV power consistent with the electrical level onboard the Alaskan Class vessels.
- ✓ Other vessels operate at voltage levels from 480 V up to 6.6 kV





### How it will work



#### **Design Requirements**

- ❖ SAFETY, SAFETY!
- No impact to berth operations :
  - During construction or from final design
- Connection basics:
  - Plugs and cables must be suitable for marine environment
  - Vessel alignment for initial connection capable of +/- 11 feet fore and aft
- Connection must be sufficiently automated to :
  - Minimize vessel crew / Require only 1 terminal employee to deliver cables
  - Enable connection & energizing process in < 2 hours
  - Allow for bumpless transfer (no blackout)
- During cargo operations the system must allow for :
  - Overall change in height of 46 feet
  - Limited movement 4 feet in either direction
  - Support of cables throughout discharge; no tension on plugs
  - Emergency shut down of power supply and disconnect







# Emissions Reductions to be Achieved



# **Expected Emission Savings**

|                                           | Estimated Emission Reductions (short tons/ship call) |     |      |      |      |     |
|-------------------------------------------|------------------------------------------------------|-----|------|------|------|-----|
| Scenario                                  | Net GHG                                              | NOx | со   | PM   | ROG  | SOx |
| BASE CASE: No changes                     |                                                      |     |      |      |      |     |
| No SSP's                                  | 0                                                    | 0   | 0    | 0    | 0    | 0   |
| COLD IRONING – 2 Alaskan<br>Class Vessels |                                                      |     |      |      |      |     |
| No SSP's                                  | 78.3                                                 | 2.2 | 0.27 | 0.08 | 0.40 | 1.6 |







## Cold Ironing BP's Alaskan Class Tankers at Berth 121

#### Summary -

- The stars have aligned to make cold ironing feasible for the Alaskan Class vessels at Berth 121
  - Infrastructure in place for Shoreside Looster Pumps
  - Diesel Electric vessel design
  - Vessel visit frequency for ANS fleet
  - Shared capital expense with POLB
- Cold ironing is clearly not a universal solution to reduce oil tanker emissions
  - Regulations should not distate which technology is used to achieve emission reductions
- Cold ironing is a more expensive option making voluntary participation less likely – use of emission reduction credits could help offset this expense and provide shortterm incentives

